
Important points to remember

Machine learning is the systematic study of algorithms and systems that improve their knowl-

edge or performance with experience. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Tasks are addressed by models, whereas learning problems are solved by learning algorithms
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Machine learning is concerned with using the right features to build the right models that achieve
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Models lend the machine learning field diversity, but features and tasks give it unity. . . . . . . . . 11

Use likelihoods if you want to ignore the prior distribution or assume it uniform, and posterior
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Everything should be made as simple as possible, but not simpler. . . . . . . . . . . . . . . . . . . . 26

In a coverage plot, classifiers with the same accuracy are connected by line segments with slope 1. 51
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The area under the ROC curve is the ranking accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Grouping model ROC curves have as many line segments as there are instance space segments
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By decreasing a model’s refinement we sometimes achieve better ranking performance. . . . . . . 61

Concavities in ROC curves can be remedied by combining segments through tied scores. . . . . . 67
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To avoid overfitting, the number of parameters estimated from the data must be considerably

less than the number of data points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

In descriptive learning the task and learning problem coincide. . . . . . . . . . . . . . . . . . . . . 83

The LGG is the most conservative generalisation that we can learn from the data. . . . . . . . . . . 97

Every concept between the least general one and one of the most general ones is also a possible
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The ranking obtained from the empirical probabilities in the leaves of a decision tree yields a
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Entropy and Gini index are sensitive to fluctuations in the class distribution,
�

Gini isn’t. . . . . . 133

Rule lists are similar to decision trees in that the empirical probabilities associated with each rule

yield convex ROC and coverage curves on the training data. . . . . . . . . . . . . . . . . . . . . 152

(XT X)
−1

acts as a transformation that decorrelates, centres and normalises the features. . . . . . . 186

Assuming uncorrelated features effectively decomposes a multivariate regression task into d uni-
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A general way of constructing a linear classifier with decision boundary w·x = t is by constructing

w as M−1
(n+µ+−n−µ−
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In the dual, instance-based view of linear classification we are learning instance weights αi
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The basic linear classifier can be interpreted from a distance-based perspective as constructing

exemplars that minimise squared Euclidean distance within each class, and then applying a
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Probabilities do not have to be interpreted as estimates of relative frequencies, but can carry the

more general meaning of (possibly subjective) degrees of belief. . . . . . . . . . . . . . . . . . . 243
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A good probabilistic treatment of a machine learning problem achieves a balance between solid

theoretical foundations and the pragmatism required to obtain a workable solution. . . . . . . 251

An often overlooked consequence of having uncalibrated probability estimates such as those

produced by naive Bayes is that both the ML and MAP decision rules become inadequate. . . 255
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Tree models ignore the scale of real-valued features, treating them as ordinal. . . . . . . . . . . . . 279

Fitting data to a fixed linear decision boundary in log-odds space by means of feature calibration
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Machine learning experiments pose questions about models that we try to answer by means of

measurements on data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

The combination of precision and recall, and therefore the F-measure, is insensitive to the num-
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