Index

K-means algorithm, 238, 265
K-means algorithm (Section 8.4), 228
K-means clustering (Example ??), 21
z-scores, 287
$\sqrt{\text { Gini, 121, 131, } 133}$
$0-1$ loss, 55
0 -norm, 216
1-norm, 216, 220
2-norm, 216, 220

A data set describing properties of learning models (Example 1.7), 34
abstraction, 280
accuracy, 16, 47
Accuracy as a weighted average (Example 2.1), 48
active learning, 109
adjacent violators, 67
affine transformation, 180
agglomerative merging, 285
Agglomerative merging using χ^{2} (Example 10.7), 286
AggloMerge(S, f,Q) (Algorithm 10.2), 286
aggregation, 280
Aleph, see ILP systems
All splitting criteria are equal, but some are more
equal than others... (Example 5.3), 130
analysis of variance, 323

ANOVA, see analysis of variance
anti-unification, 110
Apriori, see association rule algorithms
AQ, see rule learning systems
Assessing and visualising ranking performance (Section 2.2), 55

Assessing classification performance (Section 2.1), 47

Assessing probability estimates (Section 2.3), 64 association rule, 13, 169
association rule algorithms
Apriori, 177
Warmr, 178
Association rule discovery (Example 3.12), 89
Association rule mining (Section 6.3), 167
AssociationRules (D, f_{0}, c_{0}) (Algorithm 6.7), 171
at least as general as, 94
attribute, see feature
AUC, 58
average recall, see recall, average, 88
backtracking search, 120
bag of words, 36
bagging, 141
Bagging and random forests (Section 11.1), 302
Bagging (D, T, \mathscr{A}) (Algorithm 11.1), 303
basic linear classifier, xxiv, 18, 190, 201, 219, 249
Bayes' rule, 23

Bayes-optimal, 24, 26, 243
beam search, 157
Bernoulli distribution, 252
multivariate, 251
Bernoulli trial, 251
Bernoulli, Jacob, 39, 252
BestSplit-Class(D, F) (Algorithm 5.2), 124
Beyond binary classification: Summary and further reading (Section 3.4), 90
Beyond conjunctive concepts (Section 4.3), 105
bias, 83
bias and variance, 308
Bias, variance, and margins (Section 11.3), 308
bias-variance dilemma, 82
Big Lebowski, The, 13
bigram, 295
bin, 283
Binary classification and related tasks: Summary and further reading (Section 2.4), 69
binomial distribution, 252
bit vector, 251
Bivariate Gaussian mixture (Example 9.3), 246
Bivariate linear regression in matrix notation (Example 7.3), 186
Bonferroni-Dunn test, 325
Boosted rule learning (Section 11.2), 307
Boosting (Section 11.2), 304
boosting, 55
$\operatorname{Boosting}(D, T, \mathscr{A})$ (Algorithm 11.3), 305
bootstrap sample, 302
breadth-first search, 168
Brier score, 65

C4.5, see tree learning systems
Calculating impurity (Example 5.1), 122
Calculations on features (Section 10.1), 274
calibrating classifier scores, 206, 289
calibration, 203
isotonic, 68, 207, 262, 291
logistic, xxviii, 262, 289
calibration loss, 66
calibration map, 67
Calibration of categorical features (Example 10.8), 288

CART, see tree learning systems
Cartesian product, 44
categorical distribution, 252
Categorical, ordinal and real-valued features (Section 10.1), 278
central limit theorem, 203, 318
central moment, 278
centre around zero, 20, 182, 185, 187, 296
centre of mass, 20
centroid, 86, 219
characteristic function, 44
Chebyshev distance, 216
Chebyshev's inequality, 274
Chervonenkis, Alexey, 112
chicken-and-egg problem, 263
cityblock distance, see Manhattan distance class
label, 46
Class imbalance (Example 2.4), 58
Classification (Section 2.1), 46
classification
binary, 46
multi-class, 12, 71
classifier, 46
clause, 94
Closed concepts (Section 4.2), 105
clustering, 12
agglomerative, 235, 283
descriptive, 15
predictive, 15
stationary point, 229
Clustering around medoids (Section 8.4), 229
Clustering machine learning methods (Example 8.4), 228
Clustering trees (Section 5.3), 137
clustering trees, 233
CN2, see rule learning systems, see rule learning systems, see rule learning systems
www.cs.bris.ac.uk/~flach/mlbook/

CNF, see conjunctive normal form
Combining transformations (Example ??), 19
comparable, 44
Comparing Laplace-corrected precision and average recall (Example 6.6), 164
complement, 163
complete, 102
component, 246
Compression-based models (Section 9.5), 268
computational learning theory, 111
concavity, 67
concept, 143
closed, 105, 169
conjunctive, 94
concept learning, 46, 93
Concept learning: Summary and further reading (Section 4.5), 113
conditional likelihood, 260
conditional random field, 271
confidence, 169
Confidence interval (Example 12.5), 320
confidence interval, 320
confusion matrix, 47
conjugate prior, 243
conjunction, 29
conjunction $\wedge, 94$
conjunctive normal form, 94, 105
conjunctively separable, 103
consistent, 102
constructive induction, 119
contingency table, 47
Contingency tables for clustering (Example 3.10), 87
continuous feature, see feature, real-valued
convex, 196, 221
hull, 67
loss function, $\mathbf{5 5}$
ROC curve, 67, 125
set, 102, 168
convex hull
lower, 283
correlation, 137
correlation coefficient, 39, 245, 295
cosine similarity, 238
cost ratio, 63
count vector, 251
counter-example, 108
covariance, 39, 182
covariance matrix, 185, 186, 188, 219, 245, 247, 248
coverage counts, 76
Coverage counts as scores (Example 3.4), 76
coverage curve, 58
coverage plot, 50
covering algorithm, 149
covers, 94, 168
critical difference, 324
critical value, 322
Cross-validation (Example 12.4), 319
cross-validation, 17, 318
internal, 326
stratified, 319
curse of dimensionality, 224
d-prime, 289
data mining, 167
data set characteristics, 310
Data that is not conjunctively separable (Example 4.4), 103
De Morgan laws, 94, 119
decile, 276
decision boundary, 4, 12
decision list, 29, 177
decision rule, 22
decision stump, 309
decision tree, 27, 46
decision tree learning, 89
decision tree training algorithm, 287
Decision trees (Section 5.1), 121
decoding, 73
loss-based, 75
deduction, 16
©Peter Flach, March 2012 (V274.403)
default rule, 30, 147
degree of freedom, 321
degrees of freedom, $\mathbf{5 0}$
Dendrogram (Definition 8.4), 234
dendrogram, 234
descriptive clustering, $\mathbf{8 4}$
descriptive model, 14
Descriptive rule learning (Section 6.3), 161
dimensionality reduction, 298
Dirichlet prior, 66
discretisation, 140
agglomerative, 283
bottom-up, 283
divisive, 283
equal-frequency, 283
equal-width, 283
top-down, 283
Discriminative learning by optimising conditional likelihood (Section 9.3), 259
disjunction, 29
disjunction $\vee, 94$
disjunctive normal form, 94
dissimilarity, 85,137
cluster, 137
split, 138
distance, 20
Euclidean, 21, 279
Manhattan, 21
Distance metric (Definition 8.2), 216
distance metric, 216, 279
distance weighting, 225
Distance-based clustering (Section 8.4), 225
Distance-based models: Summary and further reading (Section 8.7), 239
divide-and-conquer, 30, 120, 125, 147
DKM, 141
DNF, see disjunctive normal form
dominate, 51
DualPerceptron(D) (Algorithm 7.2), 192

Eddington, Arthur, 313
©Peter Flach, March 2012 (V274.403)
edit distance, 216
eigendecomposition, 297
Einstein, Albert, 26, 313
Elliptical distance (Example 8.1), 218
EM, see Expectation-Maximisation
empirical probability, 66, 121, 122, 125
entropy, 121, 123, 124, 131, 133, 145, 269
equivalence class, 44
equivalence oracle, 107
equivalence relation, 44
error rate, 48
estimate, 39
Euclidean distance, 216
European Conference on Machine Learning, 2
European Conference on Principles and Practice of Knowledge Discovery in Databases, 2
evaluation measures, 314
example, 44
excess kurtosis, see kurtosis
exemplar, 85, 86, 219
Expectation-Maximisation, 265
Expectation-Maximisation (Section 9.4), 264
expectation-maximisation, 85
Expectation-Maximisation algorithm, 294
Expected accuracy and $A U C$ (Example 12.3), 316
Expected accuracy for unknown class distributions (Example 12.1), 314
expected value, 39, 245
experiment, 313
experimental objective, $\mathbf{3 1 4}$
explanation, 31
explanatory variable, see feature
exponential loss, 55, 307
extension, 94

F-measure, 87, 275, 316
insensitivity to true negatives, 316
false alarm rate, 48
false negative, 48
false negative rate, 48
false positive, 48
false positive rate, 48
feature, 11, 45, 241
binarisation, 281
Boolean, 278
calibration, 288
categorical, 278
construction, 36, 45
decorrelation, 186, 219, 248, 249
discretisation, 36, 283
discretisation, supervised, 283
discretisation, unsupervised, 283
domain, 33, 45
normalisation, 186, 219, 248, 249, 287
ordinal, 278
real-valued, 278
structured, 280
thresholding, 282
thresholding, supervised, 282
thresholding, unsupervised, 282
transformation, 281
two uses of, 35
unordering, 281
feature calibration, 254
Feature construction and selection (Section 10.3), 295
feature list, 28
feature selection, 224
backward elimination, 296
filter, 295
forward selection, 296
Relief, 295
wrapper, 296
feature space, 207, 208
Feature transformations (Section 10.2), 281
Feature tree (Definition 5.1), 119
feature tree, 27, 119, 141
complete, 28
Features: Summary and further reading (Section 10.4), 299
Features: the workhorses of machine learning
www.cs.bris.ac.uk/~flach/mlbook/
(Section 1.3), 33
finding the point that minimises sum of squared Euclidean distances to a set of points, 267
first-order logic, 110
First-order rule learning (Section 6.4), 172
FOIL, see ILP systems
forecasting theory, 65
frequency, see support
frequent item sets, $\mathbf{1 6 8}$
FrequentItems (D, f_{0}) (Algorithm 6.6), 170
Friedman test, 323
Friedman test (Example 12.8), 324
From kernels to distances (Section 8.6), 237
function estimator, $\mathbf{8 0}$
functor, $\mathbf{1 7 5}$

Gauss, Carl Friedrich, 90, 181
Gaussian distribution, 245
Gaussian kernel, 209
bandwidth, 209
Gaussian mixture model, 246, 265
relation to K-means, 268
Gaussian mixture models (Section 9.4), 265
general, 40
generalised linear model, 271
generality ordering, 94
generative model, 25
geometric median, 219
Gini coefficient, 121
Gini index, 121-124, 131, 133, 134, 145
Gini, Corrado, 121
glb, see greatest lower bound
Godfather, The, 13
Going beyond linearity with kernel methods (Section 7.5), 207
Golem, see ILP systems
Gosset, William Sealy, 321
gradient, 196, 219
grading model, 45, 81
Gram matrix, 185, 193, 198, 297
greatest lower bound, 95
greedy algorithm, 120
grouping model, 45, 81
Growing a tree (Example 5.2), 126
GrowTree (D, F) (Algorithm 5.1), 120
Guinness, 321
HAC(D, Dis) (Algorithm 8.4), 235
Hamming distance, 73, 216, 279
Handling more than two classes (Section 3.1), 71
harmonic mean, 87
hidden variable, 13, 264
hierarchical agglomerative clustering, 287
Hierarchical clustering (Section 8.5), 233
Hierarchical clustering of machine learning methods (Example 8.6), 233
hinge loss, 55, 200
Histogram (Example 10.2), 277
histogram, 277
homogeneous coordinates, 4, 20, 180, 184
Horn clause, 94, 105, 172
Horn theory, 105
Horn(Mb,Eq) (Algorithm 4.5), 108
Horn, Alfred, 94
How to interpret it (Section 12.3), 319
How to measure it (Section 12.2), 317
Hume, David, 16
hyperplane, 18
hypothesis space, 95, 172
ID3, see tree learning systems
ILP, see inductive logic programming
ILP systems
Aleph, 178
FOIL, 177
Golem, 178
Progol, 31, 178
IMDb movie database, 14
implication $\rightarrow, 94$
impurity
relative, 131
©Peter Flach, March 2012 (V274.403)
impurity measure, 269
imputation, 294
incomparable, 44
incomplete, 30
Incomplete features (Section 10.2), 294
inconsistent, 30
independent variable, see feature
indicator function, 47
induction, 16
problem of, 16
inductive bias, 119
inductive logic programming, 172, 281
information content, 269
information gain, 123, 284, 295
information retrieval, 87, 275, 298, 315
Information-based classification (Example 9.7), 269
input space, 208
instance
labelled, 44
instance space, 17, 33, 35, 43
segment, 27, 44, 93, 119
instances, 43
intercept, 180, 182
Internal disjunction (Example 4.3), 100
Internal disjunction (Section 4.1), 100
internal disjunction, 100, 148
Interpretation of results over multiple data sets (Section 12.3), 322
interquartile range, 276, 287
isometric
$\sqrt{\text { Gini, }} 131$
accuracy, 53, 61, 67, 105
average recall, 53, 63
entropy, 131
Gini index, 131
impurity, 145
precision, 153
precision (Laplace-corrected), 157
splitting criteria, 131
Isotonic calibration of two features (Example 10.11),

293
Isotonic feature calibration (Example 10.10), 292
item set, $\mathbf{1 6 8}$
closed, 169
Jaccard coefficient, 12
jackknife, 318
K-means
K-means
relation to Gaussian mixture model, 268
K-means, 21, 84, 85, 283
K-means problem, 226
K-medoids, 283
K-medoids algorithm, 229
k-nearest neighbour, 225
Karush-Kuhn-Tucker conditions, 196
kernel, 38, 295
kernel perceptron, 208
kernel trick, 38
Kernel-KMeans (D, K) (Algorithm 8.5), 238
KernelPerceptron (D, κ) (Algorithm 7.4), 209
Kinds of features (Section 10.1), 273
KKT, see Karush-Kuhn-Tucker conditions
KMeans(D, K) (Algorithm 8.1), 228
KMedoids($D, K, D i s)$ (Algorithm 8.2), 230
kurtosis, 278
L_{0} norm, see 0 -norm
label space, 43
Labelling a feature tree (Example 1.5), 27
Lagrange multiplier, 196
landmarking, 311
Langley, Pat, 327
Laplace correction, 66, 125, 133, 157, 243, 252, 256, 263
lasso, 189
latent semantic indexing, 298
latent variable, see hidden variable
latent variables, see hidden variable
lattice, 95, 168, 172
law of large numbers, 39
www.cs.bris.ac.uk/~flach/mlbook/

Learnability (Section 4.4), 111
learnability, 111
Learning a clustering tree (Example 5.5), 138
Learning a clustering tree with Euclidean distance (Example 5.6), 139
Learning a Horn theory (Example 4.5), 108
Learning a quadratic decision boundary (Example 7.8), 207
Learning a regression tree (Example 5.4), 134
Learning a rule list (Example 6.1), 145
Learning a rule set for one class (Example 6.3), 153
Learning conjunctive concepts (Example 4.1), 94
learning from entailment, 114
learning from interpretations, 114
learning model, 111
Learning ordered rule lists (Section 6.1), 144
learning rate, 191
Learning unordered rule sets (Section 6.2), 152
LearnRule, 175
LearnRule(D) (Algorithm 6.2), 149
LearnRuleForClass $\left(D, C_{i}\right)$ (Algorithm 6.4), 157
LearnRuleList, 175
LearnRuleList(D) (Algorithm 6.1), 149
LearnRuleSet(D) (Algorithm 6.3), 156
Least general generalisation (Section 4.1), 95
least general generalisation, 95, 100, 101, 103, 105, 119
least upper bound, 95
least-squares classifier, 190
least-squares method, 181
least-squares solution to a linear regression problem, 250
leave one out, 318
level-wise search, 168
Levenshtein distance, 216
LGG, see least general generalisation
LGG-Conj (x, y) (Algorithm 4.2), 97
LGG-Conj-ID (x, y) (Algorithm 4.3), 100
LGG-Set(D) (Algorithm 4.1), 97

lift, 171

likelihood function, 23, 279
likelihood ratio, 24
Line fitting example (Example 3.8), 80
linear
approximation, $\mathbf{1 8 0}$
combination, 180
function, 180
model, 179
transformation, 180
Linear classification (Example 1), 2
linear discriminants, 18
Linear models: Summary and further reading (Section 7.6), 210
linear regression, 81, 137
linear, piecewise, 180
linearly separable, 191
Linkage function (Definition 8.5), 234
linkage function, 234
monotonicity, 236
Linkage matters (Example 8.7), 235
literal, 94
Lloyd's algorithm, 228
local variables, 175, 280
log-likelihood, 249
log-linear models, 206
log-odds space, 254, 289
Logistic calibration of a linear classifier (Example 7.7), 205
Logistic calibration of two features (Example 10.9), 290
logistic function, 204
logistic regression, 206, 259
loss function, 55, 81
Loss-based decoding (Example 3.3), 75
L_{p} norm, see p-norm
LSA, see latent semantic indexing
lub, see least upper bound
m-estimate, 66, 256
Mach, Ernst, 26
machine learning
definition of, 4
univariate, 46
Machine learning experiments: Summary and further reading (Section 12.5), 326
Mahalanobis distance, 219, 249
majority class, 28, 30, 46, 49
Manhattan distance, 216
manifold, 224
MAP, see maximum a posteriori
Mapping the ensemble landscape (Section 11.3), 308
margin, 19, 194
of a classifer, 55
of a decision boundary, 195
of an example, 55, 195, 309
margin error, 200
marginal, 47, 171
marginal likelihood, 25
market basket analysis, 89
matrix
diagonal, 186
inverse, 245
rank, 298
matrix completion, 298
matrix decomposition, 14, 85, 296-299
Boolean, 298
non-negative, 300
with constraints, 297
Matrix transformations and decompositions (Section 10.3), 296
maximum a posteriori, 24
maximum likelihood, 24
maximum-likelihood estimate, 184
maximum-likelihood estimation, 249, 264
mean, 245, 274
arithmetic, 275
geometric, 275
harmonic, 275
mean squared error, 64
Measuring similarity (Example 1.1), 12
median, 245, 274
medoid, 219
membership oracle, 107
Meta-learning (Section 11.3), 310
meta-model, 309
MGConsistent(C, N) (Algorithm 4.4), 104
midrange point, 275
Minimum description length principle (Definition 9.1), 270
Minkowski distance, 215
Minkowski distance (Definition 8.1), 215
Missing values (Example 1.2), 22
mixture model, 246
ML, see maximum likelihood
mode, 245, 274
model, 11, 43
declarative, 31
geometric, 17
grading, 31
grouping, 31
logical, 27
parametric, 179
probabilistic, 22
univariate, 35
model ensemble, 301
Model ensembles: Summary and further reading (Section 11.4), 310
model selection, 244
model tree, 137
Models: the output of machine learning (Section 1.2), 17
monotonic, 168, 279
Monty Python's Flying Circus, 1
more general than, 94
Most general consistent hypotheses (Section 4.2), 104
MSE, see mean squared error
Multi-class AUC (Example 3.5), 76
Multi-class classification (Section 3.1), 71
Multi-class probabilities from coverage counts (Example 3.7), 79
www.cs.bris.ac.uk/~flach/mlbook/

Multi-class scores and probabilities (Section 3.1), 75
multinomial distribution, 252
multivariate linear regression, 254
multivariate naive Bayes
decomposition into univariate models, 27
multivariate normal distribution, 265
multivariate regression
decomposition into univariate regression, 187, 332
n-gram, 295
naive Bayes, 26, 187
naive Bayes assumption, 251
naive Bayes classifier, 295
Nearest-neighbour classification (Section 8.3), 223
nearest-neighbour classifier, 21, 223
nearest-neighbour retrieval, 224
negation \neg, 94
Negative examples (Example 4.2), 97
neighbour, 219
Neighbours and exemplars (Section 8.2), 219
Nemenyi test, $\mathbf{3 2 4}$
neural network, 191
Newton, Isaac, 26
no free lunch theorem, 16, 310
noise, 45
instance, 45
label, 45
nominal feature, see feature, categorical
normal distribution, 203, 245, 279
multivariate, 245
multivariate standard, 245
standard, 245, 248
normal vector, $\mathbf{1 8 0}$
normalisation, 182
row, 79
Normalisation and calibration (Section 10.2), 287
null hypothesis, 321
objective function, 55, 196
©Peter Flach, March 2012 (V274.403)

Obtaining probabilities from linear classifiers (Section 7.4), 202
Occam's razor, 26
one-versus-one, 72
One-versus-one voting (Example 3.2), 74
one-versus-rest, 72
operating conditions, 63
operating context, 314
optimisation
constrained, 195, 196
dual, 196, 197
multi-criterion, 51
primal, 196
quadratic, 195, 196
Opus, see rule learning systems
ordinal features, 215
ordinal, 274
Other descriptive models (Section 3.3), 87
Other ensemble methods (Section 11.3), 309
outlier, 183, 220, 276
output code, 72
output space, 43
Overfitting (Example 2), 5
overfitting, xxiii, 16, 28, 45, 80, 81, 85, 119, 137, 180, 194, 262, 295
Overlapping rules (Example 1.6), 29
p-norm, 215
p-value, 321
PAC, see probably approximately correct
Paired t-test (Example 12.6), 321
paired t-test, 321
$\operatorname{PAM}(D, K, D i s)$ (Algorithm 8.3), 231
Pareto front, 51
partial order, 44
partition, 44
partition matrix, 85
partitioning around medoids, 229, 283
Paths through the hypothesis space (Section 4.2), 101
PCA, see principal component analysis
©Peter Flach, March 2012 (V274.403)

Pearson, Karl, 274
percentile, 275
Percentile plot (Example 10.1), 276
percentile plot, 276
perceptron, 191
online, 191
Perceptron(D) (Algorithm 7.1), 191
PerceptronRegression(D) (Algorithm 7.3), 194
Performance evaluation (Section 1.1), 15
Performance of multi-class classifiers (Example 3.1), 72
piecewise linear, see linear, piecewise
population mean, 39
post-hoc test, $\mathbf{3 2 4}$
post-processing, 171
Posterior odds (Example 1.3), 24
posterior odds, 24
posterior probability, 22, 241
powerset, 44
Príncipe, 313
precision, 49, 87, 153, 172, 275
Laplace-corrected, 157
Precision and recall as evaluation measures (Example 12.2), 315
predicates, see first-order logic
predicted positive rate, 316
Prediction using a naive Bayes model (Example 9.4), 253

Predictive and descriptive clustering (Section 3.3), 84
predictive clustering, 84
predictive model, 14
predictor variable, see feature
principal component analysis, 20, 224, 296
prior odds, 24
prior probability, 23
probabilistic model
discriminative, 241
generative, 241
Probabilistic models for categorical data (Section 9.2), 251
www.cs.bris.ac.uk/~flach/mlbook/

Probabilistic models with hidden variables (Section 9.4), 263
Probabilistic models: Summary and further reading (Section 9.6), 270
probability distribution
cumulative, 277
right-skewed, 277
Probability estimation (Section 2.3), 63
probability estimation tree, 241
probability estimator, 63
probability smoothing, 66
probability space, 290
probably approximately correct, 111, 301
Progol, see ILP systems, see ILP systems
projection, 202
Prolog, see query languages, see query languages, see query languages
propositional logic, 110
propositionalisation, 280
prototype, 21
PruneTree (T, D) (Algorithm 5.3), 130
pruning, 28, 130
pruning set, 130
pseudo-count, 252, 256
pseudo-counts, xxii, 66, 158
pseudo-metric, 217
pure, 121
purity, 30, 144
quantile, 276
quartile, 276
query, 280
query languages
Prolog, 172, 175-177, 280
SQL, 280
Rand index, 87
random forest, $\mathbf{3 0 3}$
random forests, 309
random variable, 39
RandomForest (D, T, d) (Algorithm 11.2), 304
range, 275
www.cs.bris.ac.uk/~flach/mlbook/
ranking, 56
Ranking accuracy (Example 2.3), 56
ranking accuracy, 56
Ranking and probability estimation trees (Section 5.2), 125
ranking error, 56
ranking error rate, 56
Ranking example (Example 2.2), 56
recalibrated likelihood decision rule, 255
recall, 50, 87, 275
average, 52, 164
receiver operating characteristic, 53
$\operatorname{RecPart}(S, f, Q)$ (Algorithm 10.1), 284
recursive partitioning, 284
Recursive partitioning using information gain (Example 10.6), 284
reduced-error pruning, 130, 133, 137
incremental, 177
Reducing scatter by partitioning data (Example 8.3), 226
refinement, 60
refinement loss, 66
Regression (Section 3.2), 80
regression, 12, 55
isotonic, 68
multivariate, 186
univariate, 181
regression coefficient, 182
Regression trees (Section 5.3), 134
regressor, $\mathbf{8 0}$
regularisation, 188, 200
regularisation term in ridge regression, 270
Regularised regression (Section 7.1), 188
reject, 73
relation, 44
antisymmetric, 44
equivalence, see equivalence relation
reflexive, 44
symmetric, 44
total, 44
transitive, 44
©Peter Flach, March 2012 (V274.403)

Representing clusterings (Example 3.9), 86 residual, 81, 181
Reweighting multi-class scores (Example 3.6), 77
ridge regression, 189
Ripper, see rule learning systems, see rule learning systems
ROC curve, 58
ROC heaven, 61, 132
ROC plot, 53
Rocchio classifier, 221
rotation, 20
rule, 94
body, 143
head, 143
list, 143
set, 143
Rule learning for subgroup discovery (Section 6.3), 162
rule learning systems
AQ, 177
CN2, xxix, 177, 325
Opus, 177
Ripper, 177, 311
Slipper, 311
Tertius, 178
rule lists, 125
Rule lists as rankers (Example 6.2), 150
Rule models: Summary and further reading (Section 6.5), 177
Rule sets as rankers (Example 6.4), 158
Rule tree (Example 6.5), 160
rule tree, $\mathbf{1 6 0}$
sample complexity, 111
sample covariance, 39
sample mean, 39
sample variance, 39
scale, 274
reciprocal, 275
scaling, 20
©Peter Flach, March 2012 (V274.403)
uniform, 20
scaling matrix, 186
Scatter (Definition 8.3), 226
scatter, 85, 226
within-cluster, 85
scatter matrix, 185, 226, 297
between-cluster, 226
within-cluster, 226
Scoring and ranking (Section 2.2), 53
scoring classifier, 53
SE, see squared error
search heuristic, $\mathbf{5 5}$
seed example, 156
segment, 31
semi-supervised learning, 15
sensitivity, 48
Sensitivity to skewed class distributions (Section 5.2), 130
separate-and-conquer, 30, 147, 148
sequential minimal optimisation, 202
set, 44
cardinality, 44
complement, 44
difference, 44
disjoint, 44
intersection, 44
subset, 44
union, 44
universe, 44
Shannon, Claude, 269
shatter, 112
Shattering a set of instances (Example 4.7), 112
Shawshank Redemption, The, 13
shrinkage, 188
sigmoid, 204
signal detection theory, 53, 289
significance test, 321
silhouette, 232
Silhouettes (Section 8.4), 232
similarity, 63
singular value decomposition, 296
skewness, 278
Skewness and kurtosis (Example 10.3), 278
slack variable, 200
slack variable term in soft-margin SVMs, 270
Slipper, see rule learning systems
slope, 180
So many roads... (Section 8.1), 213
soft margin, 200
Soft margin SVM (Section 7.3), 200
Soft margins (Example 7.6), 201
Spam or not? (Example 9.1), 242
SpamAssassin, 1-12, 53, 63
sparse data, 19
sparsity, 189
specific, 40
specificity, 48
split, 119
binary, 35
SQL, see query languages
Squared error (Example 2.6), 65
squared error, 64
squared Euclidean distance, 219
stacking, 309
standard deviation, 274
Stationary points in clustering (Example 8.5), 229 statistic
of central tendency, 274
of dispersion, 274
shape, 274, 277
stop word, 257
stopping criteria, 149
stopping criterion, 284
Structured features (Example 10.4), 280
Structured features (Section 10.1), 279
Student's t distribution, 321
sub-additivity, 218
subgroup, 88, 162
extension, 88
Subgroup discovery (Example 3.11), 88
subgroup discovery, 14
subspace sampling, 303
www.cs.bris.ac.uk/~flach/mlbook/

Summary and outlook (Section 1.4), 40
supervised learning, 12, 14
support, 168
support vector, 195
support vector machine, 19, 55, 195, 279
Support vector machines (Section 7.3), 193
SVD, see singular value decomposition
SVM, see support vector machine
complexity parameter, 200
target variable, 22, 80, 241
task, 11
Tasks: the problems that can be solved with machine learning (Section 1.1), 11
terms, see first-order logic
Tertius, see rule learning systems
test set, 16, 45
Texas Instruments TI-58 programmable calculator, 210
text classification, 9, 19
The arithmetic mean minimises squared Euclidean distance (Theorem 8.1), 219
The effect of outliers (Example 7.2), 183
The effect of weighted covering (Example 6.7), 165
The hypothesis space (Section 4.1), 94
The kernel trick (Example 1.9), 37
The least-squares method (Section 7.1), 181
The normal distribution and its geometric interpretations (Section 9.1), 245
The perceptron: a heuristic learning algorithm for linear classifiers (Section 7.2), 191
Thresholding and discretisation (Section 10.2), 282
top-down, 30
total order, 44
Training a naive Bayes model (Example 9.5), 256
Training a naive Bayes model (Section 9.2), 256
training set, 12,44
transaction, 168
translation, 20

Tree learning as variance reduction (Section 5.3), 134
tree learning systems
C4.5, 141
CART, 141
ID3, 141
Tree models: Summary and further reading (Section 5.4), 141
triangle inequality, 218
trigram, 295
true negative, 48
true negative rate, $\mathbf{4 8}$
true positive, 48
true positive rate, 48, 87
Tuning your spam filter (Example 2.5), 61
Turning rankers into classifiers (Section 2.2), 61
turning rankers into classifiers, 255
Turning rankers into probability estimators (Section 2.3), 67
Two maximum-margin classifiers and their support vectors (Example 7.5), 198
Two neighbours know more than one (Example 8.2), 222

Two uses of features (Example 1.8), 35
underfitting, 180
unification, 110
Unification and anti-unification (Example 4.6), 110
unigram, 295
Univariate least-squares classifier (Example 7.4), 189
Univariate linear regression (Example 7.1), 181
Univariate logistic regression (Example 9.6), 261
Univariate mixture model with unequal variances (Example 9.2), 246
unstable, 188
Unsupervised and descriptive learning (Section 3.3), 83

Unsupervised and supervised thresholding (Example 10.5), 282
unsupervised learning, 12, 14
Using a naive Bayes model for classification (Section 9.2), 253
Using first-order logic (Section 4.3), 110
Using marginal likelihoods (Example 1.4), 25
Usual Suspects, The, 13
Vapnik, Vladimir, 112
variance, 20, 39, 83, 134, 135, 182, 185, 274, 278
VC-dimension, 112
Version Space (Definition 4.1), 102
version space, 102
Viagra, 6-38
Visualising classification performance (Section 2.1), 50

Voronoi diagram, 86
Voronoi tesselation, 222
Warmr, see association rule algorithms weak learnability, 301
Weight updates in boosting (Example 11.1), 304
weighted covering, 166
weighted covering algorithm, 308
weighted relative accuracy, $\mathbf{1 6 4}$
WeightedCovering (D) (Algorithm 6.5), 168
What to measure (Section 12.1), 314
What you'll find in the rest of the book (Section 1.4), 41

Wilcoxon's signed-rank test, 322
Wilcoxon's signed-rank test (Example 12.7), 322
χ^{2} statistic, 89, 286, 295
z-score, 245, 289
www.cs.bris.ac.uk/~flach/mlbook/

